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Abstract. Huanglongbing (HLB), an important citrus disease, causes many physiological and
anatomical changes such as phloem dysfunction, imbalance in carbohydrate partitioning, de-
crease in leaf chlorophyll, and nutritional imbalances in the affected trees, ultimately resulting
in tree decline. In Florida, HLB is associated with phloem-limited bacteria Candidatus Liberi-
bacter asiaticus (CLas), and it is vectored by the Asian citrus psyllid (Diaphorina citri). No cure
forHLBhas been found, andmost of theHLBmanagement efforts have been focused on vector
control or exclusion, improved nutrient management, and the use of HLB-tolerant rootstocks.
Individual protective covers (IPCs) are a type of psyllid exclusion tool that is increasingly used
by growers for HLBmanagement of newly planted citrus trees. However, no studies have eval-
uated their influence on citrus tree physiology. This study investigated the effect of IPCs and dif-
ferent rates of insecticides on CLas infection and different physiological attributes, including
soluble (glucose, fructose, and sucrose) and nonsoluble (starch) carbohydrates, leaf chlorophyll,
and leaf macronutrients andmicronutrients over 2.5 years of field growth. The treatments (tree
cover and insecticides rate) were applied in newly planted ‘Valencia’ sweet orange (Citrus sinen-
sis) trees grafted on ‘Cleopatra’ (C. reticulata) rootstock. The IPCs prevented CLas transmis-
sion and accumulation of foliar starch, sucrose, and glucose commonly associated with HLB.
IPC-covered trees had more leaf chlorophyll-a and chlorophyll-b than noncovered trees and
more leaf nitrogen (N) and zinc (Zn). Our findings suggest that IPCs effectively prevent CLas
infection and maintain the physiological health of young citrus trees under heavy HLB pres-
sure. Therefore, IPCs are recommended as an important component of integrated pest man-
agement for this devastating disease.

Huanglongbing (HLB) disease, also known
as citrus greening, has affected the citrus in-
dustry worldwide, and most of the commer-
cially important scion cultivars are susceptible
(Bove 2006; Dala-Paula et al. 2019). The dis-
ease was first reported in southern China in
1919, and it was named “Huang-long-bing”
by local farmers, which means “yellow drag-
on” or “yellow shoot disease.” In Florida, the
disease is associated with the phloem-limited
bacterium Candidatus Liberibacter asiaticus
(CLas) and is transmitted by Asian citrus psy-
llids (ACPs) Diaphorina citri. Although ACPs
were found in Florida in 1998, the first incidence
of HLB was not reported until 2005 (Bove
2006; Halbert 2005; Halbert and Manjunath
2004). Since the discovery of HLB in Florida,
the citrus industry has been severely affected,
resulting in major reductions in both citrus acre-
age and yield (US Department of Agriculture,

National Agricultural Statistics Service 2019).
Citrus canker and major hurricanes in 2017 and
2022 further exacerbated the decline of a for-
merly iconic industry (de Carvalho et al. 2021;
Shahbaz et al. 2023).

No known cure for HLB has been found.
When trees become infected, the disease is dif-
ficult to manage (Bove 2006; Gaire et al. 2022;
Gottwald 2010; Halbert and Manjunath 2004).
Several management practices such as vector
control through insecticide use, improved nutri-
ent management, and the use of HLB-tolerant
rootstocks have been used to maintain the sus-
tainability of citrus under HLB-endemic condi-
tions (Bowman and Albrecht 2020; Bowman
et al. 2016; Kunwar et al. 2021, 2023;
Rodrigues et al. 2020; Stansly et al. 2014). Re-
moval of infected trees from existing citrus
groves and the use of disease-free plant mate-
rial in new plantings have been recommended
(Boina and Bloomquist 2015; Halbert and
Manjunath 2004), but they are not practical in
areas where HLB is endemic, such as in Florida
(Graham et al. 2020), because most of the trees
are infected. Trunk injection of oxytetracycline
was recently reported to improve tree health and
productivity of HLB-affected citrus trees (Archer
et al. 2022a, 2022b), and a local special need la-
bel now allows the use of this methodology to
manage HLB in Florida. However, this tech-
nology is not suitable for newly planted trees,
which are most vulnerable to infection with
CLas (Hall et al. 2016; Rogers et al. 2012).

Preventing infection during the early growth
stage is essential because, otherwise, trees will
never become productive (Chung and Brlansky
2005).

HLB causes many anatomical and physio-
logical disruptions in affected trees. CLas are
localized in the sieve tubes of the phloem,
which are rich in nutrients supporting bacte-
rial growth. Previous evidence indicates that
CLas-infected phloem tissue undergoes major
anatomical changes such as sieve element
plugging, resulting in phloem dysfunction
and, ultimately, in phloem necrosis (Achor
et al. 2010; Deng et al. 2019; Kim et al. 2009;
Koh et al. 2012). Disruption of phloem tissue
inhibits the transport of photoassimilates from
source to sink organs, leading to starch accu-
mulation in the leaves (Achor et al. 2010; Koh
et al. 2012). Upregulation of important starch
biosynthesis enzymes, such as ADP-glucose
pyrophosphorylase, starch synthase, granule-
bound starch synthase, and starch debranch-
ing enzyme, and downregulation of starch
degradation enzymes, such as beta-amylase,
have also been confirmed in response to CLas
infection, contributing to leaf starch accumula-
tion (Albrecht and Bowman 2008; Kim et al.
2009). A study by Schaffer et al. (1986) of citrus
showed that starch accumulations can cause the
disintegration of the chloroplast thylakoid sys-
tem and decrease leaf chlorophyll levels. Down-
regulation of photosynthesis and chlorophyll-
associated genes such as chlorophyll a–b binding
family protein/early light-induced protein and
photosystem II 5 kDa protein in response to
CLas infection has also been observed (Albrecht
and Bowman 2008). Imbalance in carbohydrate
partitioning and disintegration of the chloroplast
thylakoid system are believed to produce foliar
HLB symptoms such as blotchy mottle and
chlorosis (Achor et al. 2010; Schaffer et al.
1986; Schneider 1968). This imbalance in car-
bohydrate partitioning is one of the main rea-
sons for the steady decline of HLB-affected
trees (Etxeberria et al. 2009).

It has been suggested that starch accumula-
tion in the leaves of HLB-affected trees con-
curs with starch depletion in the roots (Aritua
et al. 2013; Etxeberria et al. 2009). Deprivation
of photosynthates in the roots along with dis-
ruption in phloem function cause fibrous root
decline of HLB-affected trees (Johnson et al.
2014). This restricts the uptake and transloca-
tion of water and nutrients, ultimately causing
nutritional disorders and metabolic imbalances
attributable to nutrient depletion or interference
with transportation (Kumar et al. 2018; Mattos
et al. 2020; Medina et al. 2014; Spann and
Schumann 2009).

Under the present HLB-endemic conditions
in Florida (Graham et al. 2020), it is critical to
prevent CLas transmission to new plantings
and keep them disease-free and productive. In-
dividual protective covers (IPCs) are a type of
psyllid exclusion tool designed to prevent the
transmission of HLB in young citrus trees
(Alferez et al. 2021; Gaire et al. 2022). IPCs
have gained the attention of Florida citrus
growers in recent years and are being increas-
ingly used in commercial citrus production. It
has been proven that vector exclusion is an
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effective management approach for diseases
vectored by insects in citrus and other crops
(Berlinger et al. 2002; Polston and Lapidot
2007; Schumann et al. 2021; Singh et al.
2006). For example, the citrus under protective
screen has been successfully used for the ex-
clusion of psyllids and HLB prevention in cit-
rus (Ferrarezi et al. 2019; Schuman et al.
2021), Nylon mesh screens were effective for
the control of the leaf curl virus in sweet pep-
per (Singh et al. 2006), and 50-mesh screens
were effective for the control of yellow leaf
curl disease in tomato (Berlinger et al. 2002;
Polston and Lapidot 2007).

Depending on the screen material, mesh
screens can modify microclimatic conditions
and affect the physiology and health of plants
in response to the shading induced by their
use (Budiarto et al. 2019; Haijun et al. 2015;
Mahmood et al. 2018). Moderate shading has
been found to increase foliar chlorophyll con-
centrations in citrus (Budiarto et al. 2019; In-
cesu et al. 2014). The lower evaporative
demand under shaded conditions can improve
stomatal conductance and, hence, carbon di-
oxide assimilation and water use efficiency
(Haijun et al. 2015). An improved photosyn-
thetic rate has also been reported in response
to artificial shading induced by black net
screens for citrus (Budiarto et al. 2019). A re-
cent study of a feral citrus population re-
ported the positive effects of shading to
promote photosynthetic activity and mitigate
the severity of HLB (Vincent et al. 2021).
We have previously shown that IPCs can re-
duce vapor pressure deficits (Gaire et al.
2022). However, relatively little is known
about the effects of IPCs, which are com-
posed of a white high-density polyethylene
mesh, on the physiology of young citrus
trees.

We hypothesized that the microclimatic
modifications induced by IPCs coupled with a
disease-free plant system can be advantageous
for the physiological performance of the tree
and, therefore, overall tree growth and produc-
tivity. The beneficial effects of IPCs on vector
exclusion and tree growth were previously re-
ported (Gaire et al. 2022). The objective of this
study was to evaluate the physiological attrib-
utes of ‘Valencia’ (Citrus sinensis) scion grafted
on ‘Cleopatra’ (C. reticulata) rootstock with
and without IPCs and the interactions with dif-
ferent rates of insecticides.

Materials and Methods

Plant material and study site
The experiment started with the planting of

new certified disease-free citrus trees com-
posed of ‘Valencia’ (Citrus sinensis) scion
grafted on ‘Cleopatra’ (C. reticulata) rootstock
that were obtained from a commercial regis-
tered citrus nursery (Southern Citrus Nurseries,
Dundee, FL, USA). Ninety trees were planted
in January 2018 at the Southwest Florida Re-
search and Education Center (SWFREC) re-
search farm in Immokalee, Collier County, FL
(26�27051.400N, 81�26039.900W). The soil type
at this location is a sandy spodosol with little
organic matter and low cation exchange

capacity (Mylavarapu et al. 2016; Pokhrel
et al. 2020). Sand, silt, and clay concentrations
determined at the start of the experiment were
96.7%, 1.2%, and 21%, respectively; organic
matter, pH, and cation exchange capacity were
0.7%, 7.9, and 7.6 mEq/100 g, respectively.

Experimental design
The experiment was arranged in a completely

randomized 2 × 3 factorial design. The first fac-
tor (tree cover) had two levels: IPC or no IPC.
The second factor (insecticide rate) had three
levels: full recommended rate (full), half the
recommended rate (half), and no insecticides
(zero). A total of six treatment interactions
were replicated five times; each replication con-
sisted of linear plots of three trees. Trees were
planted in six rows of 15 trees each at a spacing
of 8 feet (2.4 m) within rows and 22 feet (6.7 m)
between rows.

Treatments
IPCs (Tree defender Inc., Dundee, FL, USA)

were installed on young citrus trees at the time
of planting (Jan 2018). IPCs made of monofila-
ment high-density polyethylene with a mesh size
of 50 (50 holes per linear inch, 0.297-mm holes)
were used for the experiment (Fig. 1). The mesh
had pores smaller than the averagewidth of psyl-
lid adults (�0.6 mm) and were expected to pre-
vent access of psyllids to the tree canopy (Ebert
et al. 2021). Four-foot-tall (1.2 m) IPCs were in-
stalled on tree plots immediately after planting.
After 18 months, the 4-foot IPCs were replaced
by 7-foot-tall (2.1 m) IPCs to accommodate the
expanded tree canopy and allow further expan-
sion. The 7-foot IPCs remained on the trees for
an additional 12 months until removal in Aug
2020. IPCs were tied with zip ties at the base of
the trunk to prevent psyllids and other insects
from entering.

Insecticide treatments followed the Uni-
versity of Florida’s Institute of Food and Ag-
ricultural Sciences guidelines for young trees
(Rogers 2014) and consisted of rotations of
the systemic neonicotinoids, imidacloprid
(40.4% a.i.; Nuprid 4F Max; Nufarm, Alsip,
IL, USA), clothianidin (23% a.i.; Belay;
Valent, Walnut Creek, CA, USA), and thia-
methoxam (75% a.i.; Platinum 75 SG; Syn-
genta, Wilmington, DE, USA). The rate and
time of insecticide application were adjusted
based on tree age and are summarized in Sup-
plemental Tables 1 and 2 (Rogers 2014). In-
secticides were diluted in water, and each
tree received a soil drench of 300 mL mate-
rial per application. Trees were irrigated three
times per week by under-tree microjets. Dia-
mond-R 8–8–8 young tree blend (Diamond R
Fertilizer, Fort Pierce, FL, USA) was applied
at the rate of 0.5 lb (227 g) per tree in year 1,
and at a rate of 1.0 lb (454 g) per tree in years
2 and 3. Diamond R CitriBlend 12–8–6 con-
trol release fertilizer (Diamond R Fertilizer,
Fort Pierce, FL, USA) was applied at a rate
of 0.5 lb (227 g) per tree in years 1 to 3.
Weeds were managed as needed using stan-
dard practices.

HLB disease assessment and CLas
detection

The HLB disease assessment and quanti-
tative real-time polymerase chain reaction for
CLas detection in the leaves were performed
as outlined in the study by Gaire et al.
(2022). Samples were taken during Spring
and Summer of 2019 and 2020.

Soluble and nonsoluble carbohydrate
analysis

Extraction. The soluble (glucose, fructose,
and sucrose) and nonsoluble (starch) carbohy-
drates in leaves were determined using enzy-
matic assays. Leaves were collected during
Summer (Jul) 2019, Spring (Mar) 2020, and
Summer (Jul) 2020. Three to four mature fully
expanded leaves from recent flushes were col-
lected from the middle tree in each three-tree
plot. Leaves were pulverized in liquid nitrogen
with a mortar and pestle, and 150 mg
of ground tissue was used for carbohydrate ex-
traction. Each sample was extracted twice in
1 mL of 80% ethanol for 1 h at 70 �C and cen-
trifuged for 5 min at 20,000 gn. Supernatants
were combined for the analysis of soluble car-
bohydrates. Insoluble pellets were used for
starch determination.

Soluble carbohydrate determination. Super-
natants were dried in an Eppendorf vacufuge
concentrator (Thermo Fisher Scientific,Waltham,

Fig. 1. Citrus tree with an individual protective
cover and tree wrap.
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MA, USA), resuspended in 500 mL of ultrapure
water, and centrifuged for 5 min at 20,000 gn.
Supernatants were used for soluble carbohydrate
determination. Glucose and fructose were mea-
sured sequentially by the enzymatic assay as de-
scribed in the study by Gomez et al. (2007). In
brief, glucose determination was based on the
phosphorylation of glucose to form glucose-
6-phosphate (G6P) by hexokinase (HK), fol-
lowed by the conversion of G6P and NAD to
gluconate-6-phosphate (6PGlcU) and NADH
by glucose-6-phosphate dehydrogenase (G6PDH).
Fructose determination involved the phosphor-
ylation of fructose to form fructose-6-phosphate
(F6P) by HK, the conversion of F6P to G6P by
phosphor-glucose isomerase, and the conver-
sion of G6P and NAD to 6PGlcU and NADH.
NADH production was measured at 340 nm
using a microplate spectrophotometer (Molec-
ular Devices, Sunnyvale, CA, USA). Sucrose
was determined indirectly in 10-fold diluted
supernatants by measuring glucose as de-
scribed after cleavage into glucose and fruc-
tose by invertase. All enzymatic reactions
were performed in 50 mM triethanolamine-
HCl, 5 mM MgSO4, 0.02% bovine serum al-
bumin, and 0.5 mM dithiothreitol. Assays were
performed at least in duplicate. Soluble carbo-
hydrate contents were expressed as mg/mg
leaf tissue.

Starch determination. Pellets remaining
from soluble sugar extraction were dried us-
ing an Eppendorf vacufuge concentrator
(Thermo Fisher Scientific, Waltham, MA,
USA) and resuspended in 900 mL of ultrapure
water. Starch was dispersed by autoclaving
for 1 h at 121 �C and 19 psi. An equal volume
of sodium acetate buffer (0.1 M, pH 4.65)
was added together with 5 mL (14 units) of
amyloglucosidase (Sigma-Aldrich, St. Louis,
MO, USA), and samples were incubated for
100 min at 56 �C. After centrifugation for 5 min
at 20,000 gn, supernatants were diluted 10-fold
and used for starch determination. Starch was
measured indirectly by enzymatic assay of re-
leased glucose as described for soluble carbo-
hydrates and expressed as mg/mg leaf tissue.
Foliar starch content was correlated with cycle
threshold values obtained from quantitative
real-time polymerase chain reaction during
Summer (Jul) 2019, Spring (Mar) 2020, and
Summer (Jul) 2020.

Leaf chlorophyll analysis
Chlorophyll was measured using the

method described by Nayek et al. (2014) with
some modifications. The same leaves col-
lected for the carbohydrates analysis were
used for the leaf chlorophyll analysis during
Summer (Jul) 2019, Spring (Mar) 2020, and
Summer (Jul) 2020. Leaves were pulverized
under liquid nitrogen, and 100 mg of tissue
was extracted in 2 mL of 95% ethanol. Ex-
tracts were centrifuged at 20,000 gn for
15 min at 4 �C, and supernatants were used for
the analysis. Absorbances were measured at
664 nm and 649 nm using a spectrophotome-
ter (Molecular Devices, CA, USA). Chloro-
phyll a, chlorophyll b, and total chlorophyll
contents were calculated using the following

equations:

Chlorophyll a 5 13:36� A664� 5:19� A649

[1]

Chlorophyll b 5 13:36� A664� 5:19� A649

[2]

Total Chlorophyll 5 Chlorophyll a 1 Chlorophyll b

5 22:24� A649 1 5:24� A664 [3]

where A664 5 absorbance at 664 nm and
A6495 absorbance at 649 nm.

The ratio of chlorophyll a to chlorophyll b
(chl a/b) was also calculated.

Leaf nutrient analysis
Leaf nutrients were analyzed at the end of

the study period [Summer (Aug) 2020]. Ma-
ture leaves from the recent flush were ran-
domly collected from each tree and pooled
within each plot for a total of 30 leaves per
sample. Macronutrients, nitrogen (N), phos-
phorous (P), potassium (K), calcium (Ca),
magnesium (Mg), and sulfur (S), and micronu-
trients, boron (B), zinc (Zn), manganese (Mn),
Iron (Fe), and copper (Cu), were analyzed by
Waters Agricultural Laboratories, Inc. (Ca-
milla, GA, USA). Furthermore, N was deter-
mined by the combustion method as described
by Sweeney (1989). Inductively coupled argon
plasma atomic emission (ICAP) spectrometry
was used to determine the other macronutrients
and micronutrients after digesting leaves with
nitric acid and hydrogen peroxide solution
(Havlin and Soltanpour 1980; Huang and
Schulte 1985).

Statistical analysis
An analysis of variance was conducted to

determine the effects of tree cover, insecti-
cide rate, and their interaction for all varia-
bles using a general linear model and R
programming (version 4.0.3; The R Founda-
tion 2020). Mean separation was performed
using Tukey’s honestly significant difference
test. Pearson’s correlation coefficients were
calculated for selected response variables.
Differences were defined as statistically sig-
nificant when P < 0.05.

Results

CLas detection
From Spring 2019 to Summer 2020, the

cycle threshold values of CLas in leaf tissues
ranged from 38.9 to 40.7 for trees with IPCs,
confirming that trees were free of CLas dur-
ing the study period. The cycle threshold val-
ues of trees without IPCs ranged from 21.1 to
28.0, indicating that they were infected with
CLas (Gaire et al. 2022).

Soluble and nonsoluble carbohydrates
The leaf glucose content varied signifi-

cantly between trees with and without IPCs
during Summer 2020, but not during Summer
2019 or Spring 2020 (Table 1). During Sum-
mer 2020, trees with IPCs had significantly
less glucose (1.2 mg/mg) compared with trees
without IPCs (1.8 mg/mg). No significant ef-
fects of the insecticide rate and tree cover ×

insecticide rate interaction were found for
glucose.

The leaf fructose content ranged from
0.7 mg/mg to 1.2 mg/mg throughout the study
period, but there was no significant difference
between covered and noncovered trees (Table 1).
There were no significant effects of the tree
cover, insecticide rate, or interaction between
both factors.

The leaf sucrose content varied signifi-
cantly between trees with and without IPCs
during Summer 2019 and 2020, but not during
Spring 2020 (Table 1). Trees covered with
IPCs had significantly less sucrose (16.3 mg/mg
and 21.5 mg/mg, respectively) compared with
noncovered trees (21.3 mg/mg and 28.4 mg/mg,
respectively) during Summer 2019 and Summer
2020, respectively. The insecticide rate and the
tree cover × insecticide rate interaction were not
significant for sucrose.

The leaf starch content was significantly
influenced by tree cover at all three time
points. The least starch was measured for
trees with IPCs (12.0–23.2 mg/mg), and the
most starch was found in trees without IPCs
(44.2–80.7 mg/mg) (Table 1). There were no
significant effects of the insecticide rate and
the tree cover × insecticide rate interaction on
starch.

There was a significant negative correla-
tion between cycle threshold values and starch
content (correlation coefficients: R 5 �0.85,
R 5 �0.66, and R 5 �0.70 during Summer
2019, Spring 2020, and Summer 2020, re-
spectively) (Fig. 2).

Leaf chlorophyll
Chlorophyll a, chlorophyll b, and the total

chlorophyll content were significantly influ-
enced by tree cover (Table 2). The chloro-
phyll a content was significantly higher in trees
covered with IPCs (3.1–5.1 mg/mg) compared
with uncovered trees (2.0–4.2 mg/mg) in Sum-
mer 2019, Spring 2020, and Summer 2020.
The chlorophyll b content was significantly
higher in trees with IPCs (1.0 and 1.8 mg/mg,
respectively) compared with trees without
IPCs (0.6 and 1.4 mg/mg, respectively) during
Summer 2019 and Summer 2020, but not dur-
ing Spring 2020. The total chlorophyll content
was also significantly higher in trees with IPCs
(4.2–6.9 mg/mg) compared with trees without
IPCs (2.6–5.5 mg/mg) during Summer 2019,
Spring 2020, and Summer 2020. The average
ratio of chlorophyll a and chlorophyll b ranged
from 2.2 to 3.0 in IPC-covered trees and from
2.0 to 3.0 in trees without IPCs. A significant
effect of tree cover was observed only in
Spring 2020, when trees with IPCs had a larger
chlorophyll a/b ratio (2.2) than trees without
IPCs (2.0). There were no significant effects of
the insecticide rate or the tree cover × insecti-
cide rate interaction for any of the variables.
There was a significant positive correlation
between the cycle threshold values and
chlorophyll contents (correlation coefficients:
R 5 0.5, R 5 0.38, and R 5 0.81 during
Summer 2019, Spring 2020, and Summer
2020, respectively).
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Leaf nutrients
Most of the leaf nutrient concentrations

were significantly influenced by tree cover
except for P, K, and Fe (Table 3). Further-
more, N, Mg, Ca, S, and Zn concentrations
were significantly higher in leaves from trees
covered with IPCs compared with noncov-
ered trees. Concentrations in covered trees
were 2.5% N, 28 ppm Zn, 0.49% Mg, 3.6%
Ca, and 0.3% S, whereas they were 2.3% N,
22 ppm Zn, 0.42% Mg, 3.0% Ca, and 0.2% S
in noncovered trees. Additionally, B, Mn,
and Cu were found in significantly lower con-
centrations in trees with IPCs compared with
trees without IPCs. Leaf concentrations of
covered trees were 103 ppm B, 32 ppm Mn,
and 22 ppm Cu, whereas concentrations for
trees without IPCs were 111 ppm B, 41 ppm
Mn, and 40 ppm Cu. The macronutrients and
micronutrients were not impacted signifi-
cantly by the insecticide rate and tree cover ×
insecticide rate interaction.

Discussion

During this study, we evaluated the effect
of IPCs on different tree physiological varia-
bles and the interactions with different rates
of insecticides. IPCs prevented trees from be-
coming infected with CLas, as previously re-
ported (Gaire et al. 2022). In contrast, all
trees without IPCs became infected and de-
veloped the symptoms typically associated
with HLB, including chlorotic and blotchy
mottled leaves and canopy die-back. Most
of the tree physiological variables measured
were influenced by IPCs. Leaves of trees
without IPCs contained more sucrose and
glucose than trees with IPCs, whereas no dif-
ference was found for the concentration of
fructose. Similarly, Fan et al. (2010) found
accumulations of sucrose and glucose, but
not fructose, in greenhouse-grown, graft-
inoculated CLas-infected trees. The higher
sucrose and glucose levels of the trees with-
out IPCs were likely the result of impaired
photoassimilate transport caused by CLas in-
fection (Albrecht and Bowman 2008; Kim
et al. 2009). Sucrose is the major photosyn-
thetic product that is transported from source
leaves to sink organs, such as roots and fruits,
through the phloem (Ward et al. 1997; Zim-
mermann and Ziegler 1975). Degeneration of
phloem tissue and subsequent phloem col-
lapse exhibited in HLB-affected trees are be-
lieved to obstruct the transport of sucrose to
the sink organs, leading to its accumulation
in the leaf tissue, followed by higher glucose
levels after hydrolysis (Brodersen et al. 2014;
Fan et al. 2010). Although hydrolysis of su-
crose produces both glucose and fructose, the
accumulation of glucose, but not fructose, in
leaves of HLB-affected noncovered trees
could be caused by the preferential use of
fructose by CLas, as hypothesized by Andr�e
et al. (2005) for Spiroplasma citri, which,
like CLas, resides in the phloem.

It has long been known that the accumula-
tion of starch is one of the most prominent char-
acteristics of HLB-affected trees (Albrecht,
and Bowman 2008; Etxeberria et al. 2009;T
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Fan et al. 2010; Kim et al. 2009; Schneider,
1968; Whitaker et al. 2014). During our
study, the leaf starch content of CLas-
infected noncovered trees was increased by
more than two-fold compared with CLas-
free trees that had been covered by IPCs.
This was confirmed by the negative correla-
tion between starch and the cycle threshold
value found during our study. The increase
of leaf starch in trees without IPCs could
also be caused by the upregulation of starch
biosynthesis enzymes and downregulation
of starch degradation enzymes in response
to CLas infection as well as downregulation
of photosynthesis and chlorophyll-associ-
ated genes (Albrecht and Bowman 2008;
Kim et al. 2009). Taken together, these re-
sults indicate that IPCs sustain a normal car-
bohydrate metabolism by preventing CLas
infection, thereby maintaining the balance
of starch and chlorophyll in the leaves.

More chlorophyll a, chlorophyll b, and total
chlorophyll were found in trees that were cov-
ered with IPCs than in noncovered trees. Lower
chlorophyll levels associated with excessive
foliar starch accumulation induced by CLas

infection were also found during other studies
(Fan et al. 2010; Pitino et al. 2020). This sup-
ports our finding that IPCs maintain healthy
levels of starch and chlorophyll. A previous
study by Bondada and Syvertsen (2005) sug-
gested a loss of the structural integrity of chlor-
oplasts caused by starch granules and the
reduction in chlorophyll concentration in N-
deficient citrus leaves. A sufficient N supply is
particularly important for the mobilization of
starch out of the chloroplast (Ariovich and
Cresswell 1983). Therefore, the combined ef-
fects of CLas infection, starch accumulation,
and low N concentration that we observed in
trees without IPCs could have contributed to
the lower content in chlorophyll pigments in
noncovered trees. It is generally recognized that
leaf chlorophyll levels are positively correlated
with the photosynthesis rate and plant produc-
tivity (Dawson et al. 2003; Gitelson et al. 2006;
Gogoi and Basumatary 2018; Whittaker and
Marks 1975). Therefore, the trees with IPCs are
expected to be more productive because they
reach maturity compared with trees without
IPCs.

Plants grown under low-light intensities
are generally known to have higher total chlo-
rophyll, chlorophyll a, and chlorophyll b per
unit weight of leaf and a lower chlorophyll a/b
ratio (Boardman 1977). Artificially induced par-
tial shading has also been found to increase leaf
chlorophyll in different citrus species (Brand
1997; Budiarto et al. 2019; Incesu et al. 2014;
Shao et al. 2014). Incesu et al. (2014) reported
that in ‘Lane Late’ navel orange seedlings,
shade net treatment induced both chlorophyll a
and chlorophyll b. An increase in chlorophyll b,
but not chlorophyll a, was found by Budiarto
et al. (2019) in shade-grown Kafir lime. The
shading effect of the IPCs likely contributed to
the increased chlorophyll levels measured dur-
ing our study.

Leaf macronutrient and micronutrient con-
centrations analyzed at the end of the study
varied significantly between trees with and
without IPCs, except for P, K, and Fe. Foliar
N, Mg, Ca, S, and Zn concentrations of non-
covered trees were significantly lower com-
pared with those of covered trees. The lower
concentration of these nutrients was likely
caused by the restricted nutrient uptake and

Fig. 2. Scatter plot showing correlation between leaf cycle threshold values and log-transformed starch contents measured during Summer 2019 (A), Spring 2020 (B),
and Summer 2020 (C).

Table 2. Leaf chlorophyll a and chlorophyll b contents.

Factor

Chlorophyll a (mg/mg) Chlorophyll b (mg/mg) Total chlorophyll (mg/mg) Chlorophyll a/b

Summer
2019

Spring
2020

Summer
2020

Summer
2019

Spring
2020

Summer
2020

Summer
2019

Spring
2020

Summer
2020

Summer
2019

Spring
2020

Summer
2020

Tree cover
IPC 5.1 a 4.1 a 3.1 a 1.8 a 1.9 1.0 a 6.9 a 6.0 a 4.2 a 2.8 2.2 a 3.0
No IPC 4.2 b 3.4 b 2.0 b 1.4 b 1.7 0.6 b 5.5 b 5.1 b 2.6 b 3.0 2.0 b 3.0
P value 0.016* 0.029* <0.001*** 0.002** 0.051 <0.001*** 0.008** 0.033* <0.001*** 0.092 0.020* 0.607

Insecticide rate
Full 5.2 3.5 2.4 1.8 1.7 0.8 6.9 5.2 3.2 3.0 2.1 3.0
Half 4.3 4.2 2.6 1.6 1.9 0.9 5.8 6.1 3.5 2.8 2.1 3.1
Zero 4.5 3.7 2.6 1.5 1.8 0.9 5.9 5.5 3.4 3.0 2.1 3.1
P value 0.119 0.2 0.424 0.198 0.201 0.718 0.136 0.206 0.497 0.113 0.455 0.262

Tree cover × insecticide rate
IPC × full 5.6 3.9 3.0 2.0 1.8 1.0 7.6 5.7 4.1 2.9 2.2 2.9
IPC × half 4.8 4.8 3.4 1.8 2.1 1.1 6.6 6.9 4.5 2.7 2.3 3.0
IPC × zero 4.9 3.7 3.0 1.7 1.8 1.0 6.6 5.5 4.0 2.9 2.1 3.1
No IPC × full 4.7 3.1 1.7 1.6 1.6 0.6 6.3 4.6 2.3 3.0 1.9 3.0
No IPC × half 3.7 3.5 1.8 1.3 1.7 0.6 5.0 5.2 2.5 2.8 2.1 3.1
No IPC × zero 4.0 3.7 2.2 1.3 1.8 0.7 5.3 5.5 2.9 3.2 2.1 3.0
P value 0.947 0.253 0.175 0.921 0.312 0.158 0.940 0.266 0.167 0.873 0.336 0.688

Different letters within columns indicate significant differences according to Tukey’s honestly significant difference test. *, **, *** P values significant at
5%, 1%, and <0.1%.
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transport, which have been reported for HLB-
affected citrus trees (Nwugo et al. 2013;
Spann and Schumann 2009; Wang and Triv-
edi 2013). Based on current guidelines for cit-
rus (Morgan et al. 2020), foliar N and Zn
were deficient in trees without IPCs during
our study. As discussed, N deficiency could
have exacerbated the low chlorophyll content
per unit area and high starch content in chlo-
roplast, as reported by other studies (Ariovich
and Cresswell 1983; Bondada and Syvertsen
2003).

In contrast to N, Mg, Ca, S, and Zn, the mi-
cronutrients B, Mn, and Cu were found in sig-
nificantly lower concentrations in the leaves of
trees that had been covered with IPCs than in
noncovered trees. This is inconsistent with the
results of a previous study during which those
micronutrients were significantly reduced in
HLB-affected trees (Spann and Schumann
2009). The higher concentration of Cu in the
leaves of noncovered trees was likely caused
by the frequent applications of this metal to
control citrus canker (Behlau et al. 2008). IPCs
might have prevented the foliar Cu spray to
reach the leaves of covered trees, resulting in
lower foliar concentrations. High Cu concen-
trations were also found in the soil at our trial
site (Supplemental Table 3). Although leaf B
and Mn concentrations were lower under IPCs,
both micronutrients were in the greater than
optimal and optimal range, respectively. The
reason for the lower B and Mn concentrations
in the trees with IPCs is unclear and requires
further investigation.

Although no significant differences in fo-
liar K concentrations were found between
trees with and without IPCs, foliar K concen-
trations were in the less than optimal range, ir-
respective of tree cover. The relatively low K
concentrations in the leaves might be attribut-
able to the low soil K concentration that was
measured at the trial site (Supplemental Table 3).
Most of the other foliar macronutrient andmicro-
nutrient concentrations were either within the op-
timal range or higher based on the current
guidelines for citrus (Morgan et al. 2020; Zekri
and Obreza 2019). Proper nutrient management
during the trial location is likely responsible for
the adequate concentration of these nutrients in
the leaves.

Conclusion

The HLB-induced accumulations of starch,
sucrose, and glucose in the leaves were pre-
vented using IPCs, whereas no significant
influence was reported for fructose. IPCs
maintained both chlorophyll a and chloro-
phyll b levels in leaves and prevented an
HLB-induced deficiency of foliar N and Zn
while maintaining a higher concentration of
many of the other nutrients. Overall, the results
of this study indicate that IPCs are effective
not only for excluding psyllids and preventing
CLas infection but also for maintaining the
physiological health of young citrus trees. The
use of IPCs to protect young citrus trees from
HLB in a disease-endemic environment, such
as in Florida, is highly recommended as part of
an integrated pest management program.
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